论文标题

多重神经网络中的最佳自我诱导的随机共振:电气和化学突触

Optimal self-induced stochastic resonance in multiplex neural networks: electrical versus chemical synapses

论文作者

Yamakou, Marius E., Hjorth, Poul G., Martens, Erik A.

论文摘要

电和化学突触塑造神经网络的动力学及其在信息处理中的功能作用一直是神经生物学中的一个长期问题。在本文中,我们使用分析和数值方法研究了突触在延迟的多重神经网络中自我诱导的随机共振现象的优化的作用。我们考虑了一个两层多路复用网络,其中在层内水平,神经元通过电突触或抑制性化学突触耦合。对于每个孤立的层,计算表明较弱的电和化学突触耦合是自我诱导的随机共振的更好优化者。此外,无论突触强度如何,都发现比较短的化学突触延迟更短的电气突触延迟是该现象的优化者,而更长的化学突触延迟比更长的化学突触延迟比更长的优化器更好 - 在这两种情况下,在这两种情况下,较差的优化者在事实上都是较差的优化者。发现两层的电气,抑制性或兴奋性化学多路复用在层内层的水平上只能优化现象。而且,只有在层内抑制性化学突触的两层的兴奋性化学多路复用才能优化现象。这些结果可以指导旨在建立或确认人工神经回路网络以及实际生物神经网络网络中自我诱导的随机共振的机制。

Electrical and chemical synapses shape the dynamics of neural networks and their functional roles in information processing have been a longstanding question in neurobiology. In this paper, we investigate the role of synapses on the optimization of the phenomenon of self-induced stochastic resonance in a delayed multiplex neural network by using analytical and numerical methods. We consider a two-layer multiplex network, in which at the intra-layer level neurons are coupled either by electrical synapses or by inhibitory chemical synapses. For each isolated layer, computations indicate that weaker electrical and chemical synaptic couplings are better optimizers of self-induced stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical synaptic delays are found to be better optimizers of the phenomenon than shorter chemical synaptic delays, while longer chemical synaptic delays are better optimizers than longer electrical synaptic delays -- in both cases, the poorer optimizers are in fact worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the two layers having only electrical synapses at the intra-layer levels can each optimize the phenomenon. And only excitatory chemical multiplexing of the two layers having only inhibitory chemical synapses at the intra-layer levels can optimize the phenomenon. These results may guide experiments aimed at establishing or confirming the mechanism of self-induced stochastic resonance in networks of artificial neural circuits, as well as in real biological neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源