论文标题

与AI的2D费米 - 哈伯德模型中可视化奇怪的金属相关性

Visualizing Strange Metallic Correlations in the 2D Fermi-Hubbard Model with AI

论文作者

Khatami, Ehsan, Guardado-Sanchez, Elmer, Spar, Benjamin M., Carrasquilla, Juan Felipe, Bakr, Waseem S., Scalettar, Richard T.

论文摘要

物质的密切相关阶段通常用直接的电子模式来描述。到目前为止,这是研究用超低原子实现的费米 - 哈伯德模型的基础。在这里,我们表明人工智能(AI)可以为具有微妙甚至未知模式的相位范式提供无偏的替代方法。长范围和短距离自旋相关性自发出现在对单个原子物种快照训练的卷积神经网络的过滤器中。在模型的不太理解的奇怪金属阶段中,我们发现,在当地矩的快照上训练的更复杂的网络会为非富特液体行为产生有效的顺序参数。我们的技术可以用来表征其他阶段独有的相关性,而没有明显的顺序参数或签名在投影测量中,并且对通过AI通过AI超出强度相关的系统对科学发现具有影响。

Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (AI) can provide an unbiased alternative to this paradigm for phases with subtle, or even unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase of the model, we find that a more complex network trained on snapshots of local moments produces an effective order parameter for the non-Fermi-liquid behavior. Our technique can be employed to characterize correlations unique to other phases with no obvious order parameters or signatures in projective measurements, and has implications for science discovery through AI beyond strongly correlated systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源