论文标题

分析函数的平均径向可集成性空间

Average radial integrability spaces of analytic functions

论文作者

Aguilar-Hernandez, Tanausu, Contreras, Manuel D., Rodriguez-Piazza, Luis

论文摘要

在本文中,我们介绍了$ rm(p,q)$,$ 1 \ leq p,q \ leq +\ infty $的家族。它们是平均径向可集成性的单位光盘中塑性功能的空间。这个家庭包含经典的耐寒空间(当$ p = \ infty $)和伯格曼空间(当$ p = q $)。我们根据参数在$ RM(P_1,Q_1)$(P_1,Q_1)$(P_2,Q_2)之间的包含表征。对于$ 1 <p,q <\ infty $,我们的主要结果通过伯格曼投影的界限来表征$ rm(p,q)$的双重空间(p,q)$。我们表明$ rm(p,q)$在且仅当$ q <+\ infty $时才可分开。实际上,我们提供了一种方法来构建$ \ ell^\ infty $ in $ rm(p,\ infty)$的同构副本。

In this paper we introduce the family of spaces $RM(p,q)$, $1\leq p,q\leq +\infty$. They are spaces of holomorphic functions in the unit disc with average radial integrability. This family contains the classical Hardy spaces (when $p=\infty$) and Bergman spaces (when $p=q$). We characterize the inclusion between $RM(p_1,q_1)$ and $RM(p_2,q_2)$ depending on the parameters. For $1<p,q<\infty$, our main result provides a characterization of the dual spaces of $RM(p,q)$ by means of the boundedness of the Bergman projection. We show that $RM(p,q)$ is separable if and only if $q<+\infty$. In fact, we provide a method to build isomorphic copies of $\ell^\infty$ in $RM(p,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源