论文标题
共形相关器的应力张量
Stress Tensor Sector of Conformal Correlators
论文作者
论文摘要
CFT四点函数的重要组成部分,应力张量扇形包括应力张量及其复合材料的交换。这些多应力张量运算符的OPE系数,因此,可以通过计算重型轻灯相关器来确定具有较大中央电荷的CFT中四点函数的完全应力张量扇形。我们通过引导相关器的应力张量扇形进行特定的ANSATZ来展示如何在这个方向上取得重大进展,从而迭代地计算出多应力张量操作员的OPE系数,并随着扭曲的增加而进行。一些参数不是由引导程序固定的 - 它们对应于旋转零和两个的多压力张量的OPE系数。我们进一步表明,在全息CFT中,人们可以使用在双重引力理论中计算的相移来将一组未定的参数降低到具有自旋零的多压力张量的OPE系数。最后,我们使用Lorentzian Ope倒置公式验证了其中一些结果,并评论其适用性。
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four-point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap - they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.