论文标题

$ ϕ(n)的解决方案= ϕ(n+k)$和$σ(n)=σ(n+k)$

Solutions of $ϕ(n)=ϕ(n+k)$ and $σ(n)=σ(n+k)$

论文作者

Ford, Kevin

论文摘要

我们表明,对于一些$ k \ le 3570 $和全部$ k $,带有$ 442720643463713815200 | k $,方程$ ϕ(n)= ϕ(n+k)$具有无限的许多solutions $ n $,$ n $,$ ϕ $是Euler的正常函数。我们还表明,对于所有$ k $的正比例,方程$σ(n)=σ(n+k)$具有无限的许多解决方案$ n $。证据取决于张,梅纳德,道和polymath的Prime $ k $ tupers的最新进展。

We show that for some $k\le 3570$ and all $k$ with $442720643463713815200|k$, the equation $ϕ(n)=ϕ(n+k)$ has infinitely many solutions $n$, where $ϕ$ is Euler's totient function. We also show that for a positive proportion of all $k$, the equation $σ(n)=σ(n+k)$ has infinitely many solutions $n$. The proofs rely on recent progress on the prime $k$-tuples conjecture by Zhang, Maynard, Tao and PolyMath.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源