论文标题

用于CT图像Denoising的多周期一致的对抗网络

Multi-Cycle-Consistent Adversarial Networks for CT Image Denoising

论文作者

Liu, Jinglan, Ding, Yukun, Xiong, Jinjun, Jia, Qianjun, Huang, Meiping, Zhuang, Jian, Xie, Bike, Liu, Chun-Chen, Shi, Yiyu

论文摘要

CT图像Denoisising可以视为图像到图像的翻译任务,其中的目标是学习源域$ x $(嘈杂的图像)和目标域$ y $(干净的图像)之间的转换。最近,循环矛盾的对抗性denoising网络(CCADN)通过无需配对训练数据而实现循环矛盾的损失,从而实现了最先进的结果。我们对CCADN的详细分析提出了许多有趣的问题。例如,如果噪声很大,导致域$ x $和域$ y $之间的显着差异,我们可以用中间域$ z $桥接$ x $和$ y $,以便在$ x $和$ z $之间以及$ z $和$ y $之间的去核过程都易于学习?由于这样的中间域导致多个周期,我们如何最佳执行周期矛盾?在这些问题的驱动下,我们提出了一个多周期的对抗网络(MCCAN),该网络(MCCAN)构建了中间域并执行本地和全球周期矛盾。全球周期抗性将所有发电机融合在一起,以建模整个转化过程,而局部周期一致性对相邻域之间的过程施加了有效的监督。实验表明,本地和全球周期抗性对于麦康成功都很重要,麦康的表现优于最先进。

CT image denoising can be treated as an image-to-image translation task where the goal is to learn the transform between a source domain $X$ (noisy images) and a target domain $Y$ (clean images). Recently, cycle-consistent adversarial denoising network (CCADN) has achieved state-of-the-art results by enforcing cycle-consistent loss without the need of paired training data. Our detailed analysis of CCADN raises a number of interesting questions. For example, if the noise is large leading to significant difference between domain $X$ and domain $Y$, can we bridge $X$ and $Y$ with an intermediate domain $Z$ such that both the denoising process between $X$ and $Z$ and that between $Z$ and $Y$ are easier to learn? As such intermediate domains lead to multiple cycles, how do we best enforce cycle-consistency? Driven by these questions, we propose a multi-cycle-consistent adversarial network (MCCAN) that builds intermediate domains and enforces both local and global cycle-consistency. The global cycle-consistency couples all generators together to model the whole denoising process, while the local cycle-consistency imposes effective supervision on the process between adjacent domains. Experiments show that both local and global cycle-consistency are important for the success of MCCAN, which outperforms the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源