论文标题

两阶段的多尺度乳房质量细分用于完整的乳房X线照片分析,无需用户干预

Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention

论文作者

Yan, Yutong, Conze, Pierre-Henri, Quellec, Gwenolé, Lamard, Mathieu, Cochener, Béatrice, Coatrieux, Gouenou

论文摘要

乳房X线摄影是用于早期检测和诊断乳腺癌的主要成像方式。 X射线乳房X线照片分析主要是指可疑区域的定位,然后分割,以进一步的病变分类为良性与恶性肿瘤。在各种类型的乳房异常中,肿块是乳腺癌最重要的临床发现。但是,从天然乳房X线照片中手动分割乳房肿块是耗时且容易出错的。因此,需要一个集成的计算机辅助诊断系统来帮助临床医生自动和精确的乳房质量描述。在这项工作中,我们提出了两阶段的多尺度管道,该管道提供了高分辨率全乳房X线照片的准确质量轮廓。首先,我们提出了一个扩展的深度检测器,该检测器整合了自动质量定位的多规模融合策略。其次,使用嵌套和密集的跳过连接的卷积编码器网络用于精细的候选质量。与大多数基于区域分割的研究不同,我们的框架处理了本机全乳房X线照片的质量分割,而无需任何用户干预。该管道在INBREAST和DDSM-CBIS公共数据集中受过培训,在Inbreast测试图像上的总体平均骰子达到了80.44%,表现优于最先进。我们的系统显示出具有自动全图像分割系统的有希望的准确性。广泛的实验揭示了针对乳房大小,形状和外观多样性的鲁棒性,朝着更好的无相互作用的计算机辅助诊断。

Mammography is the primary imaging modality used for early detection and diagnosis of breast cancer. X-ray mammogram analysis mainly refers to the localization of suspicious regions of interest followed by segmentation, towards further lesion classification into benign versus malignant. Among diverse types of breast abnormalities, masses are the most important clinical findings of breast carcinomas. However, manually segmenting breast masses from native mammograms is time-consuming and error-prone. Therefore, an integrated computer-aided diagnosis system is required to assist clinicians for automatic and precise breast mass delineation. In this work, we present a two-stage multi-scale pipeline that provides accurate mass contours from high-resolution full mammograms. First, we propose an extended deep detector integrating a multi-scale fusion strategy for automated mass localization. Second, a convolutional encoder-decoder network using nested and dense skip connections is employed to fine-delineate candidate masses. Unlike most previous studies based on segmentation from regions, our framework handles mass segmentation from native full mammograms without any user intervention. Trained on INbreast and DDSM-CBIS public datasets, the pipeline achieves an overall average Dice of 80.44% on INbreast test images, outperforming state-of-the-art. Our system shows promising accuracy as an automatic full-image mass segmentation system. Extensive experiments reveals robustness against the diversity of size, shape and appearance of breast masses, towards better interaction-free computer-aided diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源