论文标题
通过增强学习的自主机器人纳米制作
Autonomous robotic nanofabrication with reinforcement learning
论文作者
论文摘要
像宏观建筑块一样有效地处理单分子的能力将使复杂的超分子结构的构建无法自组装。阻碍了这一目标的基本挑战是原子尺度构象的不受控制的可变性和差的可观察性。在这里,我们提出了一种解决这两个障碍的策略,并通过操纵单分子来证明自动机器人纳米化。我们的方法采用强化学习(RL),即使面对大型不确定性和稀疏的反馈,也可以找到解决方案策略。我们通过使用超分子结构的扫描探针显微镜自主去除分子来证明我们的RL方法的潜力 - 纳米级减去制造的典型任务。我们的RL代理商表现出色,使我们能够自动执行以前必须由人类执行的任务。我们预计,我们的工作为自主代理打开了速度,精确性和毅力的功能性超分子结构的机器人构造,超出了我们当前的能力。
The ability to handle single molecules as effectively as macroscopic building-blocks would enable the construction of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present a strategy to work around both obstacles, and demonstrate autonomous robotic nanofabrication by manipulating single molecules. Our approach employs reinforcement learning (RL), which finds solution strategies even in the face of large uncertainty and sparse feedback. We demonstrate the potential of our RL approach by removing molecules autonomously with a scanning probe microscope from a supramolecular structure -- an exemplary task of subtractive manufacturing at the nanoscale. Our RL agent reaches an excellent performance, enabling us to automate a task which previously had to be performed by a human. We anticipate that our work opens the way towards autonomous agents for the robotic construction of functional supramolecular structures with speed, precision and perseverance beyond our current capabilities.