论文标题
自动编码双 - 骨骼散列
Auto-Encoding Twin-Bottleneck Hashing
论文作者
论文摘要
常规的无监督哈希方法通常利用相似性图,这些图是在高维空间中预先计算的,或者是从随机锚点中获得的。一方面,现有方法使哈希功能学习和图形结构的过程脱离了。另一方面,基于原始数据构建的图形可能会引入偏见的数据相关性知识,从而导致次优的检索性能。在本文中,我们通过提出有效且自适应代码驱动的图来解决上述问题,该图可以通过在自动编码器的上下文中进行解码来更新。具体来说,我们将其引入我们的框架双瓶颈(即潜在变量),以协作交换重要信息。一个瓶颈(即二进制代码)传达了由代码驱动的图捕获的高级固有数据结构(即低级详细信息的连续变量),从而依次宣传更新的网络反馈,以了解编码器,以了解更多的歧视性二进制代码。自动编码学习目标实际上奖励了代码驱动的图表以学习最佳编码器。此外,建议的模型可以简单地通过梯度下降来优化,而无需违反二进制约束。基准数据集的实验清楚地表明了我们的框架优于最先进的哈希方法。我们的源代码可以在https://github.com/ymcidence/tbh上找到。
Conventional unsupervised hashing methods usually take advantage of similarity graphs, which are either pre-computed in the high-dimensional space or obtained from random anchor points. On the one hand, existing methods uncouple the procedures of hash function learning and graph construction. On the other hand, graphs empirically built upon original data could introduce biased prior knowledge of data relevance, leading to sub-optimal retrieval performance. In this paper, we tackle the above problems by proposing an efficient and adaptive code-driven graph, which is updated by decoding in the context of an auto-encoder. Specifically, we introduce into our framework twin bottlenecks (i.e., latent variables) that exchange crucial information collaboratively. One bottleneck (i.e., binary codes) conveys the high-level intrinsic data structure captured by the code-driven graph to the other (i.e., continuous variables for low-level detail information), which in turn propagates the updated network feedback for the encoder to learn more discriminative binary codes. The auto-encoding learning objective literally rewards the code-driven graph to learn an optimal encoder. Moreover, the proposed model can be simply optimized by gradient descent without violating the binary constraints. Experiments on benchmarked datasets clearly show the superiority of our framework over the state-of-the-art hashing methods. Our source code can be found at https://github.com/ymcidence/TBH.