论文标题

对分数进化方程的两个分级时间网格的两种Galerkin离散化的数值分析

Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations

论文作者

Li, Binjie, Wang, Tao, Xie, Xiaoping

论文摘要

分析了分数进化方程的两种具有分级时间网格的数值方法。一个是在分数订单$ 0 <α<1 $的情况下,低阶不连续的Galerkin(DG)离散化,另一个是低阶Petrov Galerkin(PG)离散化,而分数订单$ 1 <α<2 $。通过一种新的二元技术,在合理的规律性假设对初始值的合理定期假设下,DG和PG分别得出了一阶和$(3-α)$ - 级的时间精度的时置误差估计。进行数值实验以验证理论结果。

Two numerical methods with graded temporal grids are analyzed for fractional evolution equations. One is a low-order discontinuous Galerkin (DG) discretization in the case of fractional order $0<α<1$, and the other one is a low-order Petrov Galerkin (PG) discretization in the case of fractional order $1<α<2$. By a new duality technique, pointwise-in-time error estimates of first-order and $ (3-α) $-order temporal accuracies are respectively derived for DG and PG, under reasonable regularity assumptions on the initial value. Numerical experiments are performed to verify the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源