论文标题
$ k $ -me同意,消极,多项式不变和纠结之间的关系
Relations among $k$-ME concurrence, negativity, polynomial invariants, and tangle
论文作者
论文摘要
$ k $ -me的同时发生作为多部分纠缠(Me)的量度,明确检测到任意维度的所有$ k $ - nessableableableableableableableablesable态,并满足纠缠措施的许多重要属性。负性是一种简单的可计算二分纠缠措施。不变和纠缠是研究量子状态的性质的有用工具。在本文中,我们主要研究$ K $ -ME并发,消极,多项式不变和纠缠之间的内部关系。得出了$ k $ -me的并发和消极情绪之间的牢固联系,以及$ k $ -me的并发和多项式不变性之间的牢固联系。我们获得了$ k $ -me($ k $ = $ n $)的量化关系,以及所有$ n $ qubit状态的同意和负相关性,给出$ n $ -me的确定性,以$ n $ n $ n $ n $ n $ -qubit GHz状态和白噪声和白噪声的混合物,并在$ k $ -me -me-me -me-me-me-me-me-me-me-me-me-n $ n $ n $ n $ n $ n $ n $ -natect中获得。此外,我们发现,对于任何$ 3 $ qubit的纯状态,$ k $ -me并发($ k $ = 2,3)与消极,纠缠和多项式不变性有关,而$ 4 $ -qubit的状态$ k $ -me的关系之间的关系($ k $ = 2,4)以及$ k $ k $ -k $ -men和POTOREN和POTOREN和POTOREN和POTOREN和POTORNEN和POTORENS之间的关系。我们的工作提供了$ k $ -me并发和消极的明确定量连接,以及$ k $ -me的并发和多项式不变性之间的连接。
The $k$-ME concurrence as a measure of multipartite entanglement (ME) unambiguously detects all $k$-nonseparable states in arbitrary dimensions, and satisfies many important properties of an entanglement measure. Negativity is a simple computable bipartite entanglement measure. Invariant and tangle are useful tools to study the properties of the quantum states. In this paper we mainly investigate the internal relations among the $k$-ME concurrence, negativity, polynomial invariants, and tangle. Strong links between $k$-ME concurrence and negativity as well as between $k$-ME concurrence and polynomial invariants are derived. We obtain the quantitative relation between $k$-ME ($k$=$n$) concurrence and negativity for all $n$-qubit states, give a exact value of the $n$-ME concurrence for the mixture of $n$-qubit GHZ states and white noise, and derive an connection between $k$-ME concurrence and tangle for $n$-qubit W state. Moreover, we find that for any $3$-qubit pure state the $k$-ME concurrence ($k$=2, 3) is related to negativity, tangle and polynomial invariants, while for $4$-qubit states the relations between $k$-ME concurrence (for $k$=2, 4) and negativity, and between $k$-ME concurrence and polynomial invariants also exist. Our work provides clear quantitative connections between $k$-ME concurrence and negativity, and between $k$-ME concurrence and polynomial invariants.