论文标题

缩放指数在三维各向同性湍流中饱和

Scaling exponents saturate in three-dimensional isotropic turbulence

论文作者

Iyer, Kartik P., Sreenivasan, Katepalli R., Yeung, P. K.

论文摘要

从在各种尺寸的周期盒中生成的均匀和各向同性湍流的直接数值模拟数据库,我们提取速度增量矩的球形对称部分,并首先验证以下(有些有争议的)结果:$ 4/5 $ THS LAW在量表的范围内,量表相同的范围是相同的量表,而不是量表的范围。 {\ it {Anomalous}},偏离$ 2/3 $的自相似值,在高雷诺数时接近$ 0.72 $的常数。我们将纵向指数及其衍生物的依赖性相对于时刻顺序$ n $的依赖性进行比较,并估算了Hölder指数的最可能值。我们证明,横向缩放指数对大$ N $饱和,并将这种趋势追溯到信号中存在大型局部跳跃。雷诺数最高的饱和值约为$ 2 $,表明,当以分形精神解释时,涡流纸的存在而不是更复杂的奇异性。通常,流体动力湍流中的缩放概念似乎甚至比多重分子描述更为复杂。

From a database of direct numerical simulations of homogeneous and isotropic turbulence, generated in periodic boxes of various sizes, we extract the spherically symmetric part of moments of velocity increments and first verify the following (somewhat contested) results: the $4/5$-ths law holds in an intermediate range of scales and that the second order exponent over the same range of scales is {\it{anomalous}}, departing from the self-similar value of $2/3$ and approaching a constant of $0.72$ at high Reynolds numbers. We compare with some typical theories the dependence of longitudinal exponents as well as their derivatives with respect to the moment order $n$, and estimate the most probable value of the Hölder exponent. We demonstrate that the transverse scaling exponents saturate for large $n$, and trace this trend to the presence of large localized jumps in the signal. The saturation value of about $2$ at the highest Reynolds number suggests, when interpreted in the spirit of fractals, the presence of vortex sheets rather than more complex singularities. In general, the scaling concept in hydrodynamic turbulence appears to be more complex than even the multifractal description.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源