论文标题

关于扩张单调风险措施的扩展特性

On the extension property of dilatation monotone risk measures

论文作者

Rahsepar, Massoomeh, Xanthos, Foivos

论文摘要

令$ \ mathcal {x} $为$ l^1 $的子集,其中包含简单的随机变量的空间$ \ mathcal {l} $和$ρ:\ M​​athcal {x} \ rightArow( - \ iffty,\ infty,\ infty,\ infty] $与FATOU属性相关,我们在$中均在$上张贴。 $σ(l^1,\ Mathcal {l})$降低半连续和扩张单调功能$ \ OVERLINEρ:l^1 \ rightarrow( - \ infty,\ infty,\ infty] $。此外,$ \overlineρ$preserlineρ$ preserves preserves honotocitione(quasi)convexity convexity convexity invexity invexity coste corning corning in cashing $ $ $ $ $。 Quasiconvex法律不变功能在[17,20]中证明是我们结果的应用,我们表明,在Orlicz Hearts上的规范风险措施允许自然扩展到$ l^1 $,保留了[4,6]中获得的强大表示形式。

Let $\mathcal{X}$ be a subset of $L^1$ that contains the space of simple random variables $\mathcal{L}$ and $ρ: \mathcal{X} \rightarrow (-\infty,\infty]$ a dilatation monotone functional with the Fatou property. In this note, we show that $ρ$ extends uniquely to a $σ(L^1,\mathcal{L})$ lower semicontinuous and dilatation monotone functional $\overlineρ: L^1 \rightarrow (-\infty,\infty]$. Moreover, $\overlineρ$ preserves monotonicity, (quasi)convexity, and cash-additivity of $ρ$. Our findings complement recent extension results for quasiconvex law-invariant functionals proved in [17,20]. As an application of our results, we show that transformed norm risk measures on Orlicz hearts admit a natural extension to $L^1$ that retains the robust representations obtained in [4,6].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源