论文标题

随机弗兰克 - 沃尔夫(Frank-Wolfe),以限制有限和最小化

Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

论文作者

Négiar, Geoffrey, Dresdner, Gideon, Tsai, Alicia, Ghaoui, Laurent El, Locatello, Francesco, Freund, Robert M., Pedregosa, Fabian

论文摘要

我们提出了一种新型随机的富兰克 - 沃尔夫(又名条件梯度)算法,用于使用广义的线性预测/结构进行约束的平滑有限和最小化。这类问题包括经验风险最小化,稀疏,低级别或其他结构化约束。提出的方法易于实现,不需要阶梯尺寸的调整,并且具有独立于数据集大小的恒定触电成本。此外,作为该方法的副产品,我们获得了可以用作停止标准的Frank-Wolfe间隙的随机估计器。根据设置,提出的方法匹配或改进了随机Frank-Wolfe算法的最佳计算保证。几个数据集上的基准强调了不同的方案,其中所提出的方法比相关方法表现出更快的经验收敛性。最后,我们在开源软件包中提供了所有考虑的方法的实现。

We propose a novel Stochastic Frank-Wolfe (a.k.a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse, low-rank, or other structured constraints. The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration cost that is independent of the dataset size. Furthermore, as a byproduct of the method we obtain a stochastic estimator of the Frank-Wolfe gap that can be used as a stopping criterion. Depending on the setting, the proposed method matches or improves on the best computational guarantees for Stochastic Frank-Wolfe algorithms. Benchmarks on several datasets highlight different regimes in which the proposed method exhibits a faster empirical convergence than related methods. Finally, we provide an implementation of all considered methods in an open-source package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源