论文标题

艾森斯坦系列和史塔克·赫纳点的限制

Restriction of Eisenstein series and Stark-Heegner points

论文作者

Hsieh, Ming-Lun, Yamana, Shunsuke

论文摘要

在达尔蒙(Darmon),波兹(Pozzi)和冯克(Vonk)的最新作品中,作者考虑了希尔伯特·艾森斯坦(Hilbert Eisenstein)系列的特定$ p $ - 阿迪克家族$ e_k(1,\ brch)$与奇数角色$ \ brch $相关的狭窄理想级别$ \ brch $相关的理想小组组的真实Quadratic field $ f $,并计算了某个$ p $ $ $ $ $ $ $ - $ e_k(1,\ brch)$和椭圆形的新形式$ f $ of $γ_0(p)$ $ 2 $。在本文中,我们将其构造概括为包括环体变量,从而获得两种可变的三重产品$ p $ -Adic $ l $ - 系列。此外,当$ f $与$ \ q $上的椭圆曲线$ e $相关时,我们证明,沿重量方向,这款$ p $ -Adic $ l $ -series的第一个衍生物是$ p $ a的$ e $ $ e $ $ f $ $ $ $ $ $ $ $ p $ p $ p $ $ p $ - $ p $ -

In a recent work of Darmon, Pozzi and Vonk, the authors consider a particular $p$-adic family of Hilbert Eisenstein series $E_k(1,\brch)$ associated with an odd character $\brch$ of the narrow ideal class group of a real quadratic field $F$ and compute the first derivative of a certain one-variable twisted triple product $p$-adic $L$-series attached to $E_k(1,\brch)$ and an elliptic newform $f$ of weight $2$ on $Γ_0(p)$. In this paper, we generalize their construction to include the cyclotomic variable and thus obtain a two-variable twisted triple product $p$-adic $L$-series. Moreover, when $f$ is associated with an elliptic curve $E$ over $\Q$, we prove that the first derivative of this $p$-adic $L$-series along the weight direction is a product of the $p$-adic logarithm of a Stark-Heegner point of $E$ over $F$ introduced by Darmon and the cyclotomic $p$-adic $L$-function for $E$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源