论文标题

在适应性驱动的稳态中违反了广义波动定理:对毛细胞振荡的应用

Violation of generalized fluctuation theorems in adaptively driven steady states: Applications to hair cell oscillations

论文作者

Sheth, Janaki, Bozovic, Dolores, Levine, Alex

论文摘要

内耳中自发振荡的感觉细胞束是由内部活性过程驱动的随机,非线性振荡器的一个例子。此外,此内部活动是自适应的 - 其功率输入取决于系统的当前状态。我们研究这种自适应驱动的非平衡极限循环振荡器中的波动耗散关系。我们观察到预期的违反了众所周知的平衡波动定理(FDT),并验证在毛细胞振荡器的非自适应驱动模型中存在广泛的波动 - 散射定理(GFDT)。该广义波动定理要求在与随机振荡器的平均极限周期相关的共同移动框架中分析系统。然后,我们通过数值模拟和分析计算证明了自适应驱动的动力细胞模型违反了FDT和GFDT。我们继续使用随机,有限状态,动力学模型来显示这种反馈控制在随机极限周期中的驱动器振荡器通常违反了FDT和GFDT。我们建议实际上可能会使用GFDT的分解作为一种工具,以更广泛地寻找和量化与驱动(非平衡)生物学动力学相关的自适应,反馈机制的效果。

The spontaneously oscillating hair bundle of sensory cells in the inner ear is an example of a stochastic, nonlinear oscillator driven by internal active processes. Moreover, this internal activity is adaptive -- its power input depends on the current state of the system. We study fluctuation dissipation relations in such adaptively-driven, nonequilibrium limit-cycle oscillators. We observe the expected violation of the well-known, equilibrium fluctuation-dissipation theorem (FDT), and verify the existence of a generalized fluctuation-dissipation theorem (GFDT) in the non-adaptively driven model of the hair cell oscillator. This generalized fluctuation theorem requires the system to be analyzed in the co-moving frame associated with the mean limit cycle of the stochastic oscillator. We then demonstrate, via numerical simulations and analytic calculations, that the adaptively-driven dynamical hair cell model violates both the FDT and the GFDT. We go on to show, using stochastic, finite-state, dynamical models, that such a feedback-controlled drive in stochastic limit cycle oscillators generically violates both the FDT and GFDT. We propose that one may in fact use the breakdown of the GFDT as a tool to more broadly look for and quantify the effect of adaptive, feedback mechanisms associated with driven (nonequilibrium) biological dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源