论文标题
两次中子敲除作为$^{22} $ mg,$^{23} $ al和$^{24} $ si中的状态组成的探测
Two-neutron knockout as a probe of the composition of states in $^{22}$Mg, $^{23}$Al, and $^{24}$Si
论文作者
论文摘要
Simpson和Tostevin提出,在直接两种核子敲除反应中A-2残基的独家平行动量分布的宽度和形状具有对核子单粒子构型及其在外来核的波函数中的耦合的可测量灵敏度。我们在此处报告了第一个基准测试,并使用了这种新的光谱工具。在这种直接的两次中子去除反应中填充的中子缺陷核中的状态的独家平行动量分布,$^{22} $ mg,$^{23} $ al和$^{24} $ si与结合eikonal反应理论和壳模模式计算的预测进行了比较。对于众所周知的$^{22} $ mg和$^{23} $ al nuclei,发现测量和计算是一致的,支持了平行动量分布宽度对壳壳模型两种模型的角度组成的依赖性。在$^{24} $ si中,与重要的$^{23} $ al(p,p,$γ$)$^{24} $ si天体反应率相关的是3439(9)kev的水平,确认是$ 2^+_ 2 $ state,而$ 4^+_ 1 $ $ $ $ y State comportron compotron comportron complon comportron。通过托马斯 - 艾尔曼(Thomas-ehrman)转移的理论考虑来解决这个难题,这也表明先前报道的3471-kev态在$^{24} $ si中实际上是($ 0^+_ 2 $)水平($ 0^+_ 2 $),是有史以来最大的实验镜像转移之一。
Simpson and Tostevin proposed that the width and shape of exclusive parallel momentum distributions of the A-2 residue in direct two-nucleon knockout reactions carry a measurable sensitivity to the nucleon single-particle configurations and their couplings within the wave functions of exotic nuclei. We report here on the first benchmarks and use of this new spectroscopic tool. Exclusive parallel momentum distributions for states in the neutron-deficient nuclei $^{22}$Mg, $^{23}$Al, and $^{24}$Si populated in such direct two-neutron removal reactions were extracted and compared to predictions combining eikonal reaction theory and shell-model calculations. For the well-known $^{22}$Mg and $^{23}$Al nuclei, measurements and calculations were found to agree, supporting the dependence of the parallel momentum distribution width on the angular momentum composition of the shell-model two-neutron amplitudes. In $^{24}$Si, a level at 3439(9) keV, of relevance for the important $^{23}$Al(p,$γ$)$^{24}$Si astrophysical reaction rate, was confirmed to be the $2^+_2$ state, while the $4^+_1$ state, expected to be strongly populated in two-neutron knockout, was not observed. This puzzle is resolved by theoretical considerations of the Thomas-Ehrman shift, which also suggest that a previously reported 3471-keV state in $^{24}$Si is in fact the ($0^+_2$) level with one of the largest experimental mirror-energy shifts ever observed.