论文标题

学习阴影手绘草图

Learning to Shadow Hand-drawn Sketches

论文作者

Zheng, Qingyuan, Li, Zhuoru, Bargteil, Adam

论文摘要

我们提出了一种全自动方法,可以从成对的线绘图草图和照明方向生成详细而准确的艺术阴影。我们还贡献了一个新的数据集,其中包括一对示例的一对线图和带有照明方向的阴影。值得注意的是,生成的阴影迅速传达了素描场景的基础3D结构。因此,我们的方法产生的阴影可以直接使用,也可以作为艺术家的绝佳起点。我们证明,我们提出的深度学习网络需要手绘草图,在潜在空间中构建一个3D模型,并呈现由此产生的阴影。生成的阴影尊重手绘线和基础3D空间,并包含复杂而准确的细节,例如自我阴影效果。此外,产生的阴影包含艺术效果,例如从后照明出现的边缘照明或光晕,这是可以通过传统的3D渲染方法来实现的。

We present a fully automatic method to generate detailed and accurate artistic shadows from pairs of line drawing sketches and lighting directions. We also contribute a new dataset of one thousand examples of pairs of line drawings and shadows that are tagged with lighting directions. Remarkably, the generated shadows quickly communicate the underlying 3D structure of the sketched scene. Consequently, the shadows generated by our approach can be used directly or as an excellent starting point for artists. We demonstrate that the deep learning network we propose takes a hand-drawn sketch, builds a 3D model in latent space, and renders the resulting shadows. The generated shadows respect the hand-drawn lines and underlying 3D space and contain sophisticated and accurate details, such as self-shadowing effects. Moreover, the generated shadows contain artistic effects, such as rim lighting or halos appearing from back lighting, that would be achievable with traditional 3D rendering methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源