论文标题
用分形代码纠正跨越错误
Correcting spanning errors with a fractal code
论文作者
论文摘要
我们用来实现量子误差校正代码的密切相关的系统可能会导致高重,有问题的错误。令人鼓舞的是,我们可以期望没有类似字符串的逻辑运算符$ - (例如Cuxic Code $ - $)的本地量子错误校正校正代码对高度相关的,一维错误的稳定性。挑战仍然是设计利用这些代码高距离的解码算法。在这里,我们通过为“斐波那契代码”提出有效的解码器来开始开发此类算法。二维经典代码,模拟了立方体代码的分形性质。我们的迭代解码器通过反复使用最小重量的完美匹配来纠正校正,通过利用代码的对称性。我们执行的数值实验表明我们的解码器对一维相关的误差具有鲁棒性。首先,使用低误差率的位翼噪声模型,我们发现我们的解码器展示了逻辑上的故障率,该逻辑失败率在晶格的线性大小上呈指数指数缩放。相比之下,无法忍受跨越错误的解码器不会随着系统大小的增加而实现这种快速衰减的故障率。我们还使用跨越的噪声模型找到了有限阈值,该模型引入了沿着晶格的完整行和列伸展的字符串状误差。这些结果提供了直接的证据,表明我们的解码器对跨越晶格的一维相关误差具有鲁棒性。
The strongly correlated systems we use to realise quantum error-correcting codes may give rise to high-weight, problematic errors. Encouragingly, we can expect local quantum error-correcting codes with no string-like logical operators $-$ such as the cubic code $-$ to be robust to highly correlated, one-dimensional errors that span their lattice. The challenge remains to design decoding algorithms that utilise the high distance of these codes. Here, we begin the development of such algorithms by proposing an efficient decoder for the `Fibonacci code'; a two-dimensional classical code that mimics the fractal nature of the cubic code. Our iterative decoder finds a correction through repeated use of minimum-weight perfect matching by exploiting symmetries of the code. We perform numerical experiments that show our decoder is robust to one-dimensional, correlated errors. First, using a bit-flip noise model at low error rates, we find that our decoder demonstrates a logical failure rate that scales super exponentially in the linear size of the lattice. In contrast, a decoder that could not tolerate spanning errors would not achieve this rapid decay in failure rate with increasing system size. We also find a finite threshold using a spanning noise model that introduces string-like errors that stretch along full rows and columns of the lattice. These results provide direct evidence that our decoder is robust to one-dimensional, correlated errors that span the lattice.