论文标题
$ \ text {ads} _3/\ text {cft} _2 $在高级属
$\text{AdS}_3/\text{CFT}_2$ at higher genus
论文作者
论文摘要
我们继续研究$ \ mathrm {ads} _3 \ times \ mathrm {s}^3 \ times \ times \ mathbb {t}^4 $ in tensionless loces loce arxiv:1911.00378中。我们考虑了高等属表面的理论。我们提供的证据表明,世界表相关器本地化在某些涵盖$ \ mathrm {ads} _3 $ HOLOMORPHORPHINE的边界的世界表上。这将字符串模量空间的积分大大简化为有限的总和。该属性表明,字符串世界表的较高属校正重现了双对称Orbifold Cft $ \ Mathrm {sym}^n(\ MathBb {t}^4)$中$ 1/n $校正的结构。
We continue our study of the worldsheet theory of superstrings on $\mathrm{AdS}_3 \times \mathrm{S}^3 \times \mathbb{T}^4$ in the tensionless limit arXiv:1911.00378. We consider the theory on higher genus surfaces. We give evidence that the worldsheet correlators localise on certain worldsheets that cover the boundary of $\mathrm{AdS}_3$ holomorphically. This simplifies the string moduli space integral dramatically to a finite sum. This property shows that the higher genus corrections of the string worldsheet reproduce the structure of the $1/N$ corrections in the dual symmetric orbifold CFT $\mathrm{Sym}^N(\mathbb{T}^4)$.