论文标题

深切的研究课程在移动学习环境中的辍学预测

Deep Attentive Study Session Dropout Prediction in Mobile Learning Environment

论文作者

Lee, Youngnam, Shin, Dongmin, Loh, HyunBin, Lee, Jaemin, Chae, Piljae, Cho, Junghyun, Park, Seoyon, Lee, Jinhwan, Baek, Jineon, Kim, Byungsoo, Choi, Youngduck

论文摘要

学生辍学预测提供了改善学生参与度的机会,从而最大程度地提高了学习经验的整体有效性。但是,关于学生辍学的研究主要是在学校辍学或课程辍学的情况下进行的,在移动学习环境中的学习课程尚未被彻底考虑。在本文中,我们研究了移动学习环境中的研究课程辍学预测问题。首先,我们在移动学习环境中定义了研究课程,研究课程辍学和研究课程辍学预测任务。基于定义,我们提出了一个基于新颖的变压器模型,用于预测研究会话辍学,DAS:移动学习环境中的深入研究课程辍学预测。 DAS具有一个编码器解码器结构,该结构由堆叠的多头注意力和点向馈电网络组成。 DAS中深刻的专注计算能够捕获动态学生互动之间的复杂关系。据我们所知,这是研究移动学习环境中研究课程辍学的首次尝试。与基线模型相比,大规模数据集中的经验评估表明,DAS在接收器操作特征曲线下的面积有显着改善,可以实现最佳性能。

Student dropout prediction provides an opportunity to improve student engagement, which maximizes the overall effectiveness of learning experiences. However, researches on student dropout were mainly conducted on school dropout or course dropout, and study session dropout in a mobile learning environment has not been considered thoroughly. In this paper, we investigate the study session dropout prediction problem in a mobile learning environment. First, we define the concept of the study session, study session dropout and study session dropout prediction task in a mobile learning environment. Based on the definitions, we propose a novel Transformer based model for predicting study session dropout, DAS: Deep Attentive Study Session Dropout Prediction in Mobile Learning Environment. DAS has an encoder-decoder structure which is composed of stacked multi-head attention and point-wise feed-forward networks. The deep attentive computations in DAS are capable of capturing complex relations among dynamic student interactions. To the best of our knowledge, this is the first attempt to investigate study session dropout in a mobile learning environment. Empirical evaluations on a large-scale dataset show that DAS achieves the best performance with a significant improvement in area under the receiver operating characteristic curve compared to baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源