论文标题

用于预测反应性混合状态的机器学习模型的比较研究

A Comparative Study of Machine Learning Models for Predicting the State of Reactive Mixing

论文作者

Ahmmed, B., Mudunuru, M. K., Karra, S., James, S. C., Vesselinov, V. V.

论文摘要

反应性混合的准确预测对于许多地球和环境科学问题至关重要。为了研究在不同情况下随着时间的推移混合动力学的混合,建立了高保真性,有限元的数值模型,以求解快速,不可逆的双分子反应 - 反应扩散方程,以模拟一系列的反应混合情景。总共使用不同的模型输入参数进行了2,315个模拟,其中包含速度场中涡流结构的各种空间尺度,与速度振荡相关的时间尺度,基于涡流的速度,基于涡流的速度,Anisotropic分散式相互作用差异和分子分散的扰动参数。输出包括反应物和产品的浓度曲线。这些模拟的输入和输出分别将其连接到特征和标记矩阵中,以训练20个不同的机器学习(ML)模拟器以近似系统行为。比较了基于线性方法,贝叶斯方法,集合学习方法和多层感知器(MLP)的20个ML模拟器,以评估这些模型。对ML模拟器进行了专门的训练,可以对混合状态进行分类,并预测表征物种产生,衰减和混合程度的三量感兴趣(QOIS)。线性分类器和回归器无法重现Qois;但是,集合方法(分类器和回归器)和MLP准确地分类了反应性混合和QOI的状态。在合奏方法中,随机森林和基于决策树的Adaboost忠实地预测了Qois。在运行时,训练有素的ML仿真器的价格比高保真数值模拟快$ \ 10^5 $倍。集合和MLP模型的速度和准确性促进了不确定性定量(通常需要1,000个模型运行),以估计QOIS上的不确定性界限。

Accurate predictions of reactive mixing are critical for many Earth and environmental science problems. To investigate mixing dynamics over time under different scenarios, a high-fidelity, finite-element-based numerical model is built to solve the fast, irreversible bimolecular reaction-diffusion equations to simulate a range of reactive-mixing scenarios. A total of 2,315 simulations are performed using different sets of model input parameters comprising various spatial scales of vortex structures in the velocity field, time-scales associated with velocity oscillations, the perturbation parameter for the vortex-based velocity, anisotropic dispersion contrast, and molecular diffusion. Outputs comprise concentration profiles of the reactants and products. The inputs and outputs of these simulations are concatenated into feature and label matrices, respectively, to train 20 different machine learning (ML) emulators to approximate system behavior. The 20 ML emulators based on linear methods, Bayesian methods, ensemble learning methods, and multilayer perceptron (MLP), are compared to assess these models. The ML emulators are specifically trained to classify the state of mixing and predict three quantities of interest (QoIs) characterizing species production, decay, and degree of mixing. Linear classifiers and regressors fail to reproduce the QoIs; however, ensemble methods (classifiers and regressors) and the MLP accurately classify the state of reactive mixing and the QoIs. Among ensemble methods, random forest and decision-tree-based AdaBoost faithfully predict the QoIs. At run time, trained ML emulators are $\approx10^5$ times faster than the high-fidelity numerical simulations. Speed and accuracy of the ensemble and MLP models facilitate uncertainty quantification, which usually requires 1,000s of model run, to estimate the uncertainty bounds on the QoIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源