论文标题

一种机器学习软件系统的方法来捕获社会,监管,治理和气候问题

A machine-learning software-systems approach to capture social, regulatory, governance, and climate problems

论文作者

Tucker, Christopher A.

论文摘要

本文将讨论人工智能计算机系统作为基于批判的,隐式组织和固有的设备的作用,它与平行的政府政策同步部署,作为一种以定量形式捕捉民族谋求复杂性的真正手段,在社会上的经济群体中的公共满足感,监管群体,法规构造,委托和委托领域的公共满足感。它将讨论一种涉及众所周知的算法的解决方案,并提供改进的知识代理机制,从而提高效用范围,影响力范围(就阶级阶层而言)和运营效率。它将结束对这些和其他历史含义的讨论。

This paper will discuss the role of an artificially-intelligent computer system as critique-based, implicit-organizational, and an inherently necessary device, deployed in synchrony with parallel governmental policy, as a genuine means of capturing nation-population complexity in quantitative form, public contentment in societal-cooperative economic groups, regulatory proposition, and governance-effectiveness domains. It will discuss a solution involving a well-known algorithm and proffer an improved mechanism for knowledge-representation, thereby increasing range of utility, scope of influence (in terms of differentiating class sectors) and operational efficiency. It will finish with a discussion of these and other historical implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源