论文标题

使用U-NET和分割平均网络对颈动脉壁进行分割

Segmentation of carotid vessel wall using U-Net and segmentation average network

论文作者

Jiang, Mingjie, Spence, J. David, Chiu, Bernard

论文摘要

在血管壁体积(VWV)和局部容器壁层厚度(VWT)定量颈动脉中,需要对颈动脉壁进行分割。血管壁的手动分割是耗时的,容易出现观察者间的变异性。在本文中,我们提出了一个卷积神经网络,以从3D颈动脉超声图像中分割颈动脉(CCA)。提出的CNN涉及三个U-NET,这些U-NET在轴向,侧面和额叶方向上分割了3D超声(3DU)图像。我们在本文中提出的新的分割平均网络(SAN)巩固了由三个U-NET产生的分割图。实验结果表明,拟议的CNN将骰子相似性系数(DSC)提高到64.8%至67.5%,敏感性从63.8%到70.5%,而接收器操作员特征曲线(AUC)下的面积从0.89到0.89至0.94。

Segmentation of carotid vessel wall is required in vessel wall volume (VWV) and local vessel-wall-plus-plaque thickness (VWT) quantification of the carotid artery. Manual segmentation of the vessel wall is time-consuming and prone to interobserver variability. In this paper, we proposed a convolution neural network to segment the common carotid artery (CCA) from 3D carotid ultrasound images. The proposed CNN involves three U-Nets that segmented the 3D ultrasound (3DUS) images in the axial, lateral and frontal orientations. The segmentation maps generated by three U-Nets were consolidated by a novel segmentation average network (SAN) we proposed in this paper. The experimental results show that the proposed CNN improved the Dice similarity coefficient (DSC) for vessel wall segmentation from 64.8% to 67.5%, the sensitivity from 63.8% to 70.5%, and the area under receiver operator characteristic curve (AUC) from 0.89 to 0.94.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源