论文标题

力拆卸融合:将脊柱机器人US带到下一个“级别”

Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next "Level"

论文作者

Tirindelli, Maria, Victorova, Maria, Esteban, Javier, Kim, Seong Tae, Navarro-Alarcon, David, Zheng, Yong Ping, Navab, Nassir

论文摘要

脊柱注射通常在几种临床程序中进行。目标椎骨水平的定位(即椎骨在脊柱中的位置)通常是通过背触诊或在X射线指导下进行的,从而产生了更高的程序失败的机会或暴露于电离辐射。在文献中已经进行了初步研究,表明超声成像可能是X射线检测的精确且安全的替代方法。但是,超声数据嘈杂且解释复杂。在这项研究中,引入了一种用于自动椎骨水平检测的机器人脉冲方法。该方法依赖于超声和力数据的融合,因此在过程中提供了“触觉”和视觉反馈,从而在存在数据损坏的情况下会导致更高的性能。机器人臂通过使用力耗竭数据定位椎骨水平自动沿脊柱扫描志愿者的背部。在力迹线上可见椎骨水平的发生作为峰,通过正确控制机器人在患者背部施加的力来增强。超声数据使用深度学习方法处理,以提取1D信号,以建模沿着脊柱的每个位置具有椎骨的概率。使用1D卷积网络融合处理的力和超声数据,以计算椎骨水平的位置。将该方法与纯图像和基于纯力的方法进行比较,用于椎骨计数,显示出改善的性能。特别是,融合方法能够在测试集中正确对100%的椎骨水平进行分类,而纯图像和基于纯武力的方法只能分别对80%和90%的椎骨进行分类。在模拟的模拟临床应用中评估了所提出的方法的潜力。

Spine injections are commonly performed in several clinical procedures. The localization of the target vertebral level (i.e. the position of a vertebra in a spine) is typically done by back palpation or under X-ray guidance, yielding either higher chances of procedure failure or exposure to ionizing radiation. Preliminary studies have been conducted in the literature, suggesting that ultrasound imaging may be a precise and safe alternative to X-ray for spine level detection. However, ultrasound data are noisy and complicated to interpret. In this study, a robotic-ultrasound approach for automatic vertebral level detection is introduced. The method relies on the fusion of ultrasound and force data, thus providing both "tactile" and visual feedback during the procedure, which results in higher performances in presence of data corruption. A robotic arm automatically scans the volunteer's back along the spine by using force-ultrasound data to locate vertebral levels. The occurrences of vertebral levels are visible on the force trace as peaks, which are enhanced by properly controlling the force applied by the robot on the patient back. Ultrasound data are processed with a Deep Learning method to extract a 1D signal modelling the probabilities of having a vertebra at each location along the spine. Processed force and ultrasound data are fused using a 1D Convolutional Network to compute the location of the vertebral levels. The method is compared to pure image and pure force-based methods for vertebral level counting, showing improved performance. In particular, the fusion method is able to correctly classify 100% of the vertebral levels in the test set, while pure image and pure force-based method could only classify 80% and 90% vertebrae, respectively. The potential of the proposed method is evaluated in an exemplary simulated clinical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源