论文标题

通过后抽样将专家的先验知识纳入实验设计

Incorporating Expert Prior Knowledge into Experimental Design via Posterior Sampling

论文作者

Li, Cheng, Gupta, Sunil, Rana, Santu, Nguyen, Vu, Robles-Kelly, Antonio, Venkatesh, Svetha

论文摘要

科学实验通常由于复杂的实验制备和处理而昂贵。因此,实验设计涉及找到最佳实验输入的任务,该任务通过使用尽可能少的实验来导致所需的输出。实验者通常可以获取有关全球最佳位置的知识。但是,他们不知道如何利用这些知识来加速实验设计。在本文中,我们采用贝叶斯优化的技术来实验设计,因为贝叶斯优化已成为优化昂贵的黑盒功能的有效工具。同样,未知如何将有关全局最佳级的专家先验知识纳入贝叶斯优化过程。为了解决这个问题,我们代表有关全局最优的专家知识,通过在其上放置先验分布,然后得出其后验分布。通过后验采样,已经提出了一种有效的贝叶斯优化方法。我们从理论上分析了提出的算法的收敛性,并讨论了合并专家之前的鲁棒性。我们通过优化分类器的合成函数和调整超参数以及关于短聚合物纤维的合成实验来评估算法的效率。结果清楚地证明了我们提出的方法的优势。

Scientific experiments are usually expensive due to complex experimental preparation and processing. Experimental design is therefore involved with the task of finding the optimal experimental input that results in the desirable output by using as few experiments as possible. Experimenters can often acquire the knowledge about the location of the global optimum. However, they do not know how to exploit this knowledge to accelerate experimental design. In this paper, we adopt the technique of Bayesian optimization for experimental design since Bayesian optimization has established itself as an efficient tool for optimizing expensive black-box functions. Again, it is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization process. To address it, we represent the expert knowledge about the global optimum via placing a prior distribution on it and we then derive its posterior distribution. An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum. We theoretically analyze the convergence of the proposed algorithm and discuss the robustness of incorporating expert prior. We evaluate the efficiency of our algorithm by optimizing synthetic functions and tuning hyperparameters of classifiers along with a real-world experiment on the synthesis of short polymer fiber. The results clearly demonstrate the advantages of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源