论文标题

在大虾池塘水质预测的状态空间模型中实施平均归还

Enforcing Mean Reversion in State Space Models for Prawn Pond Water Quality Forecasting

论文作者

Dabrowski, Joel Janek, Rahman, Ashfaqur, Pagendam, Daniel Edward, George, Andrew

论文摘要

这项研究的贡献是一种新型方法,可以在国家空间模型的多步预测中引入平均恢复。在虾池塘水质预测应用中,该方法证明了这种方法。平均归还通过逐渐将其绘制到先前观察到的动力学的平均值来限制预测。这纠正了由混乱,非线性和随机趋势等不规则性引起的预测偏差。该方法的关键特征包括(1)它强制执行均值归还,(2)它提供了一种模拟短期和长期动态的手段,(3)它能够应用平均值回归以选择结构性状态空间组件,并且(4)易于实现。在各种状态空间模型上展示了我们的平均复归方法,并与大虾池塘水质数据集中的几个时间序列模型进行了比较。结果表明,均值回归将长期预测误差降低了60%以上,以产生比较中最准确的模型。

The contribution of this study is a novel approach to introduce mean reversion in multi-step-ahead forecasts of state-space models. This approach is demonstrated in a prawn pond water quality forecasting application. The mean reversion constrains forecasts by gradually drawing them to an average of previously observed dynamics. This corrects deviations in forecasts caused by irregularities such as chaotic, non-linear, and stochastic trends. The key features of the approach include (1) it enforces mean reversion, (2) it provides a means to model both short and long-term dynamics, (3) it is able to apply mean reversion to select structural state-space components, and (4) it is simple to implement. Our mean reversion approach is demonstrated on various state-space models and compared with several time-series models on a prawn pond water quality dataset. Results show that mean reversion reduces long-term forecast errors by over 60% to produce the most accurate models in the comparison.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源