论文标题

采样的摩兰家谱过程

The Sampled Moran Genealogy Process

论文作者

King, Aaron A., Lin, Qianying, Ionides, Edward L.

论文摘要

我们定义了采样的Moran家谱过程,这是一个连续的马尔可夫在谱系空间上,随着时间的流逝采样了经典的Moran过程的人口统计学。为此,我们首先使用新颖的表示开始定义Moran家谱过程。然后,我们将此过程扩展到包括时间的抽样。我们在平稳性假设下为采样过程得出了精确的条件和边缘概率分布,并为其生成的任何一系列谱系序列的可能性提供了精确的表达。这导致了与文献中现有的系统动力学方法有关的一些有趣的观察。在整个过程中,我们的证明是原始的,并利用严格的及时计算,对于所有人口规模和抽样过程都是精确的。

We define the Sampled Moran Genealogy Process, a continuous-time Markov process on the space of genealogies with the demography of the classical Moran process, sampled through time. To do so, we begin by defining the Moran Genealogy Process using a novel representation. We then extend this process to include sampling through time. We derive exact conditional and marginal probability distributions for the sampled process under a stationarity assumption, and an exact expression for the likelihood of any sequence of genealogies it generates. This leads to some interesting observations pertinent to existing phylodynamic methods in the literature. Throughout, our proofs are original and make use of strictly forward-in-time calculations and are exact for all population sizes and sampling processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源