论文标题

智能反射表面的深度强化学习:朝独立操作

Deep Reinforcement Learning for Intelligent Reflecting Surfaces: Towards Standalone Operation

论文作者

Taha, Abdelrahman, Zhang, Yu, Mismar, Faris B., Alkhateeb, Ahmed

论文摘要

智能反射表面(IRS)的有希望的覆盖范围和光谱效率提高正在吸引越来越多的兴趣。但是,为了在实践中实现这些表面,需要解决一些挑战。这些主要挑战之一是如何在这些被动表面上配置反射系数,而无需大规模的通道估计或梁训练开销。较早的工作建议利用监督的学习工具设计IRS反思矩阵。尽管这种方法具有减少梁训练开销的潜力,但它需要收集大型数据集来训练神经网络模型。在本文中,我们提出了一个新型的深入增强学习框架,用于预测IRS反射矩阵,并使用最少的训练开销。仿真结果表明,所提出的在线学习框架可以融合到假设完美渠道知识的最佳速率。这代表了实现独立的IRS操作迈出的重要一步,在该操作中,表面在没有基础架构的任何控制的情况下配置自身。

The promising coverage and spectral efficiency gains of intelligent reflecting surfaces (IRSs) are attracting increasing interest. In order to realize these surfaces in practice, however, several challenges need to be addressed. One of these main challenges is how to configure the reflecting coefficients on these passive surfaces without requiring massive channel estimation or beam training overhead. Earlier work suggested leveraging supervised learning tools to design the IRS reflection matrices. While this approach has the potential of reducing the beam training overhead, it requires collecting large datasets for training the neural network models. In this paper, we propose a novel deep reinforcement learning framework for predicting the IRS reflection matrices with minimal training overhead. Simulation results show that the proposed online learning framework can converge to the optimal rate that assumes perfect channel knowledge. This represents an important step towards realizing a standalone IRS operation, where the surface configures itself without any control from the infrastructure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源