论文标题
ETA Carinae的CO,水和可能的甲醇接近Periastron
CO, Water, and Possible Methanol in Eta Carinae Approaching Periastron
论文作者
论文摘要
在偶尔气中,几乎完全在年轻的恒星物体周围发现了复杂的有机分子甲醇,因此被视为最近恒星形成的路标。在这里,我们报告了在发光的蓝色可变$η$ carinae周围的复杂双层环境中首次可能检测甲醇周围的甲醇,同时使用ALMA研究了CO(2-1)在2020 Periastron的巨大二元级别的轨道阶段所追踪的分子云条件。在$^{{13} $ cs的替代方案中偏爱甲醇,发射起源于热($ t _ {\ rm {gas}} \ simeq $ 700 k)材料,$ \ sim $ \ sim $ 2 $''$''$(0.02 pc),相比之下,相比之下,相比之下,与之相比,与之相比,与之相比,与之相反,与之相比,这是一个远方的内部等级。在冷却器中吸收($ t _ {\ rm {gas}} \ simeq $ 110 k)的气体层。我们还报告了557 GHz和988 GHz的$ HERSCHEL $/HIFI观察的水检测。甲醇的丰度比几个较低的质量恒星高几至50倍,而水丰度与在凉爽的,致密的分子云中观察到的水丰度相似。 $η$ carinae的核心中的甲醇:水丰度比可能表明甲醇形成过程类似于粉尘晶粒上的Fischer-Tropsch型催化反应。这些观察结果证明,在其进化的末端,在大量恒星周围的化学演化环境中可能发生复杂的分子形成,因为鉴于足够的气体密度和屏蔽条件,就像在大规模相互作用的伴侣和合并残留物周围发生的材料中可能发生的那样。
In circumstellar gas, the complex organic molecule methanol has been found almost exclusively around young stellar objects, and is thus regarded as a signpost of recent star formation. Here we report the first probable detection of methanol around an evolved high-mass star, in the complex circumstellar environment around the Luminous Blue Variable $η$ Carinae, while using ALMA to investigate molecular cloud conditions traced by CO (2-1) in an orbit phase of the massive binary preceding the 2020 periastron. Favoring methanol over a $^{13}$CS alternative, the emission originates from hot ($T_{\rm{gas}} \simeq$ 700 K) material, $\sim$2$''$ (0.02 pc) across, centered on the dust-obscured binary in contrast to the CO which traces inner layers of the extended massive equatorial torus, and is accompanied by prominent absorption in a cooler ($T_{\rm{gas}} \simeq$ 110 K) layer of gas. We also report detections of water in $Herschel$/HIFI observations at 557 GHz and 988 GHz. The methanol abundance is several to 50 times higher than observed towards several lower mass stars, while water abundances are similar to those observed in cool, dense molecular clouds. The very high methanol:water abundance ratio in the core of $η$ Carinae may suggest methanol formation processes similar to Fischer-Tropsch-type catalytic reactions on dust grains. These observations prove that complex molecule formation can occur in the chemically evolved environments around massive stars in the end stages of their evolution, given sufficient gas densities and shielding conditions as may occur in material around massive interacting companions and merger remnants.