论文标题

涉及n-finsler-laplacian和l^p Norm的改进的Trudinger-Moser不平等现象

An improved Trudinger-Moser inequality involving N-Finsler-Laplacian and L^p norm

论文作者

Liu, Yanjun

论文摘要

假设$ f:\ mathbb {r}^{n} \ rightarrow [0, +\ infty)$是$ c^{2}类的凸函数(\ m athbb {r}^{n} {n} \ backslash \ backslash \ {0 \}) $γ_1= \ inf \ limits _ { u \ | _p^n},$并定义标准$ $ \ | | | _ {n,f,γ,p} = \ bigG(\int_Ωf^{n}(\ nabla u)dx-u)dx-γ\ \ \ | | _p | _p | _p^n \ bigg \ bigG) \ Mathbb {r}^{n}(n \ geq 2)$是一个平稳的界面域。然后,对于$ p> 1 $和$ 0 \leqγ<γ_1$,我们有$$ \ sup_ {u \ in w^{1,n} _ {0}(ω),\ | u \ | _ { 1} \int_ΩE^{λ| u |^{\ frac {n} {n-1}}} dx <+\ infty,$ $ whene $ 0<λ\leqλ_{n} = n} = n} = n^{\ frac {\ frac {n} κ_{n}^{\ frac {1} {n-1}} $和$κ_{n} $是单位wulff球的体积。此外,通过使用爆破分析和容量技术,我们证明可以为任何$ 0 \leqγ<γ_1$获得上限。

Suppose $F: \mathbb{R}^{N} \rightarrow [0, +\infty)$ be a convex function of class $C^{2}(\mathbb{R}^{N} \backslash \{0\})$ which is even and positively homogeneous of degree 1. We denote $γ_1=\inf\limits_{u\in W^{1, N}_{0}(Ω)\backslash \{0\}}\frac{\int_ΩF^{N}(\nabla u)dx}{\| u\|_p^N},$ and define the norm $\|u\|_{N,F,γ, p}=\bigg(\int_ΩF^{N}(\nabla u)dx-γ\| u\|_p^N\bigg)^{\frac{1}{N}}.$ Let $Ω\subset \mathbb{R}^{N}(N\geq 2)$ be a smooth bounded domain. Then for $p> 1$ and $0\leq γ<γ_1$, we have $$ \sup_{u\in W^{1, N}_{0}(Ω), \|u\|_{N,F,γ, p}\leq 1}\int_Ωe^{λ|u|^{\frac{N}{N-1}}}dx<+\infty, $$ where $0<λ\leq λ_{N}=N^{\frac{N}{N-1}} κ_{N}^{\frac{1}{N-1}}$ and $κ_{N}$ is the volume of a unit Wulff ball. Moreover, by using blow-up analysis and capacity technique, we prove that the supremum can be attained for any $0 \leqγ<γ_1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源