论文标题

螺旋性,低维分布式混乱和MHD湍流的缩放

Helicity, low-dimensional distributed chaos and scaling in MHD turbulence

论文作者

Bershadskii, A.

论文摘要

结果表明,可以将二阶的螺旋分布分布(levich-tsinober的无粘性流体动力学不变)保存为磁性水力动力学中的绝热不变。已经开发了分布式混乱方法和惯性现象学,用于以这种绝热不变为主的磁性水力动力学过程,并将理论考虑的某些后果与太阳风中的直接数值模拟和测量结果进行了比较。在这种情况下,还简要讨论了星际MHD湍流中的螺旋缩放。

It is shown that the second-order moment of helicity distribution (the Levich-Tsinober invariant of inviscid hydrodynamics) can be preserved as an adiabatic invariant in magnetohydrodynamics. The distributed chaos approach and inertial range phenomenology have been developed for the magnetohydrodynamic processes dominated by this adiabatic invariant, and some consequences of the theoretical consideration have been compared with results of direct numerical simulations and measurements in the solar wind. Helical scaling in interstellar MHD turbulence has been also briefly discussed in this context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源