论文标题
MGD Dirac星星
MGD Dirac stars
论文作者
论文摘要
这里采用了几何变形方法(MGD)来研究紧凑的恒星构型,这是流体麸皮上有效的爱因斯坦 - 迪拉克耦合场方程的解决方案。然后使用非线性的,自我互动的费米子场来得出MGD Dirac恒星,其特性进行了分析和讨论。在涉及旋转的模型中,MGD Dirac Star的最大质量被证明是旋转自相互作用耦合常数的特定功能,该模型涉及Brane张力的最严格的现象学电流界限。
The method of geometric deformation (MGD) is here employed to study compact stellar configurations, which are solutions of the effective Einstein-Dirac coupled field equations on fluid branes. Non-linear, self-interacting, fermionic fields are then employed to derive MGD Dirac stars, whose properties are analyzed and discussed. The MGD Dirac star maximal mass is shown to increase as an specific function of the spinor self-interaction coupling constant, in a realistic model involving the most strict phenomenological current bounds for the brane tension.