论文标题

深度大脑刺激研究的增强学习框架

Reinforcement Learning Framework for Deep Brain Stimulation Study

论文作者

Krylov, Dmitrii, Tachet, Remi, Laroche, Romain, Rosenblum, Michael, Dylov, Dmitry V.

论文摘要

大脑中的神经元故障有时会同步发挥作用,据报道引起许多神经系统疾病,例如帕金森氏症。因此,对这种集体同步活动的抑制和控制对于神经科学而言至关重要,并且由于需要尝试人类大脑而需要依靠有限的工程试验。我们提出了模拟神经元的这种集体行为的第一个强化学习健身房框架,并使我们能够为神经元合成模型的环境找到抑制参数。我们成功地通过RL抑制了三种病理信号传导状态的同步,表征了框架的噪声稳定性,并通过与多种PPO代理接合来进一步消除不需要的振荡。

Malfunctioning neurons in the brain sometimes operate synchronously, reportedly causing many neurological diseases, e.g. Parkinson's. Suppression and control of this collective synchronous activity are therefore of great importance for neuroscience, and can only rely on limited engineering trials due to the need to experiment with live human brains. We present the first Reinforcement Learning gym framework that emulates this collective behavior of neurons and allows us to find suppression parameters for the environment of synthetic degenerate models of neurons. We successfully suppress synchrony via RL for three pathological signaling regimes, characterize the framework's stability to noise, and further remove the unwanted oscillations by engaging multiple PPO agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源