论文标题

时间时代的分布式边缘着色

Distributed Edge Coloring in Time Quasi-Polylogarithmic in Delta

论文作者

Balliu, Alkida, Kuhn, Fabian, Olivetti, Dennis

论文摘要

在分布式图算法领域中,以$2δ-1 $颜色为$2δ-1 $颜色的$ n $ node图$δ$的边缘的边缘是最大程度$δ$的边缘的问题之一。尽管在理解这个问题方面取得了很大的进步,但运行时间对$δ$的依赖性是一个长期以来的开放问题。最近,Kuhn [Soda '20]表明,该问题可以在时间$ 2^{o(\ sqrt {\logΔ})}}+o(\ log log^* n)$中解决。 在本文中,我们研究了分布式本地模型中的边缘着色问题。我们表明,$(\ Mathit {度} +1)$ - 列表边缘着色问题,因此也可以在时间$ \ log^{o(\ log \logΔ)}δ+ o(\ log log^* n)$中确定地解决$(2Δ-1)$ - 边缘着色问题。这比Kuhn [Soda '20]的结果有了重大改进。

The problem of coloring the edges of an $n$-node graph of maximum degree $Δ$ with $2Δ- 1$ colors is one of the key symmetry breaking problems in the area of distributed graph algorithms. While there has been a lot of progress towards the understanding of this problem, the dependency of the running time on $Δ$ has been a long-standing open question. Very recently, Kuhn [SODA '20] showed that the problem can be solved in time $2^{O(\sqrt{\logΔ})}+O(\log^* n)$. In this paper, we study the edge coloring problem in the distributed LOCAL model. We show that the $(\mathit{degree}+1)$-list edge coloring problem, and thus also the $(2Δ-1)$-edge coloring problem, can be solved deterministically in time $\log^{O(\log\logΔ)}Δ+ O(\log^* n)$. This is a significant improvement over the result of Kuhn [SODA '20].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源