论文标题

标签引导的文本分类学习

Label-guided Learning for Text Classification

论文作者

Liu, Xien, Wang, Song, Zhang, Xiao, You, Xinxin, Wu, Ji, Dou, Dejing

论文摘要

文本分类是自然语言处理中最重要,最基本的任务之一。该任务的执行主要取决于文本表示学习。当前,大多数现有的学习框架主要集中于编码单词之间的本地上下文信息。这些方法始终忽略用于编码文本信息的全局线索,例如标签信息。在这项研究中,我们提出了一个标签引导的学习框架,用于文本表示和分类。我们的方法很新颖,但很简单,我们只将标签引导的编码层插入常用的文本表示模式中。该标签引导的图层执行基于标签的细心编码,以将通用文本嵌入(由上下文信息学习者编码)映射到不同的标签空间中,从而导致标签的嵌入。在我们提出的框架中,标签引导的层可以通过上下文编码方法轻松直接应用,以执行共同学习。文本信息是根据本地上下文信息和全局标签线索编码的。因此,对于文本分类,获得的文本嵌入更加鲁棒和歧视性。在基准数据集上进行了广泛的实验,以说明我们提出的方法的有效性。

Text classification is one of the most important and fundamental tasks in natural language processing. Performance of this task mainly dependents on text representation learning. Currently, most existing learning frameworks mainly focus on encoding local contextual information between words. These methods always neglect to exploit global clues, such as label information, for encoding text information. In this study, we propose a label-guided learning framework LguidedLearn for text representation and classification. Our method is novel but simple that we only insert a label-guided encoding layer into the commonly used text representation learning schemas. That label-guided layer performs label-based attentive encoding to map the universal text embedding (encoded by a contextual information learner) into different label spaces, resulting in label-wise embeddings. In our proposed framework, the label-guided layer can be easily and directly applied with a contextual encoding method to perform jointly learning. Text information is encoded based on both the local contextual information and the global label clues. Therefore, the obtained text embeddings are more robust and discriminative for text classification. Extensive experiments are conducted on benchmark datasets to illustrate the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源