论文标题

边缘增强的图形卷积网络,用于通过句法关系进行事件检测

Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation

论文作者

Cui, Shiyao, Yu, Bowen, Liu, Tingwen, Zhang, Zhenyu, Wang, Xuebin, Shi, Jinqiao

论文摘要

事件检测(ED)是信息提取的关键子任务,旨在识别文本中特定事件类型的实例。对任务的先前研究已经验证了将句法依赖性整合到图形卷积网络中的有效性。但是,这些方法通常忽略依赖性标签信息,这些信息传达了ED丰富而有用的语言知识。在本文中,我们提出了一个名为Edge-Edge-Edge-Edhanced Graph卷积网络(EE-GCN)的新型体系结构,该网络同时利用句法结构并输入依赖性标签信息来执行ED。具体而言,边缘感知节点更新模块旨在通过通过特定的依赖性类型汇总语法连接的单词来生成表达的单词表示。此外,为了充分探索隐藏在依赖关系边缘的线索,引入了节点感知的边缘更新模块,从而通过上下文信息来完善关系表示。这两个模块彼此互补,并以相互促进的方式工作。我们对广泛使用的ACE2005数据集进行实验,结果对竞争性基线方法显示出显着改善。

Event detection (ED), a key subtask of information extraction, aims to recognize instances of specific event types in text. Previous studies on the task have verified the effectiveness of integrating syntactic dependency into graph convolutional networks. However, these methods usually ignore dependency label information, which conveys rich and useful linguistic knowledge for ED. In this paper, we propose a novel architecture named Edge-Enhanced Graph Convolution Networks (EE-GCN), which simultaneously exploits syntactic structure and typed dependency label information to perform ED. Specifically, an edge-aware node update module is designed to generate expressive word representations by aggregating syntactically-connected words through specific dependency types. Furthermore, to fully explore clues hidden in dependency edges, a node-aware edge update module is introduced, which refines the relation representations with contextual information. These two modules are complementary to each other and work in a mutual promotion way. We conduct experiments on the widely used ACE2005 dataset and the results show significant improvement over competitive baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源