论文标题

理解和减轻鲁棒性与准确性之间的权衡

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

论文作者

Raghunathan, Aditi, Xie, Sang Michael, Yang, Fanny, Duchi, John, Liang, Percy

论文摘要

对抗性训练增加了训练设置,并带有扰动以改善可靠的错误(在最坏情况下扰动),但通常会导致标准误差的增加(在未受扰动的测试输入上)。对此权衡的先前解释取决于假设中没有预测指标的假设,标准级较低且强大的错误。在这项工作中,当最佳线性预测变量的标准零且可靠的误差时,我们精确地表征了增强对线性回归中标准误差的影响。特别是,我们表明,即使增强扰动具有从最佳线性预测变量的无噪声观察,标准误差也会增加。然后,我们证明最近提出的强大自我训练(RST)估计器可改善可靠的误差,而无需牺牲无噪声线性回归的标准误差。从经验上讲,对于神经网络,我们发现使用不同的对抗训练方法的第一个改善了随机旋转和对抗性旋转以及对抗性$ \ ell_ \ ell_ \ infty $扰动的标准和可靠误差。

Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeoff rely on the assumption that no predictor in the hypothesis class has low standard and robust error. In this work, we precisely characterize the effect of augmentation on the standard error in linear regression when the optimal linear predictor has zero standard and robust error. In particular, we show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor. We then prove that the recently proposed robust self-training (RST) estimator improves robust error without sacrificing standard error for noiseless linear regression. Empirically, for neural networks, we find that RST with different adversarial training methods improves both standard and robust error for random and adversarial rotations and adversarial $\ell_\infty$ perturbations in CIFAR-10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源