论文标题
爆炸现象的通用途径
A Universal Route to Explosive Phenomena
论文作者
论文摘要
在许多复杂系统中观察到关键转变。这包括耦合振荡器网络中同步的发作或人口中流行状态的出现。当经典模型通过合并其他效果推广时,“爆炸性”的一阶转变在各种系统中引起了特别的关注。在这里,我们给出了一个数学论点,即这种一阶转变的出现并不奇怪,而是一种普遍期望的效果:沿通用的两参数家族改变经典模型必须导致关键性的改变。为了说明我们的框架,我们在不同的物理系统中给出了三个明确的示例:适应性流行动力学的模型,用于库拉莫托模型的概括以及渗透过渡。
Critical transitions are observed in many complex systems. This includes the onset of synchronization in a network of coupled oscillators or the emergence an epidemic state within a population. "Explosive" first-order transitions have caught particular attention in a variety of systems when classical models are generalized by incorporating additional effects. Here we give a mathematical argument that the emergence of such first-order transitions is not surprising but rather a universally expected effect: Varying a classical model along a generic two-parameter family must lead to a change of the criticality. To illustrate our framework, we give three explicit examples of the effect in distinct physical systems: a model of adaptive epidemic dynamics, for a generalization of the Kuramoto model, and for a percolation transition.