论文标题
贝叶斯毛弹性含水层来自INAR表面变形数据。第一部分:最大后验估计值
Bayesian Poroelastic Aquifer Characterization from InSAR Surface Deformation Data. Part I: Maximum A Posteriori Estimate
论文作者
论文摘要
表征地下水含水层的性质对于预测含水层响应和管理地下水资源至关重要。在这项工作中,我们开发了一个高维可伸缩的贝叶斯反转框架,该框架由三维准静态线性毛弹性模型控制,以表征地下水含水层中横向通透性变化。我们确定了从厘米水平的表面变形测量值(从干涉合成孔径雷达(INSAR)获得的)后,确定后渗透率分布的最大后验(MAP)点。通过使用基于伴随的衍生物,不精确的牛顿方法来确定地图点以及Matérn类稀疏的先验精确操作员,可以实现我们对高参数维度的可伸缩性。总之,这些保证的地图点是以成本的成本来测量的,它以前进/伴奏的孔隙弹性求解,这与参数尺寸无关。我们将我们的方法应用于内华达州梅斯基特市的市政井的测试用例,其中可用INSAR和GPS表面变形数据。我们解决了最多320,824个状态可变程度的自由度(DOF)和16,896个参数DOF的问题。对噪声水平进行一致的处理,因此含水层表征的结果不取决于表面变形数据的像素间距。我们的结果表明,INSAR数据的使用显着改善了横向含水层异质性的表征,而基于INSAR的含水层表征恢复了由独立的每日GPS测量观察到的复杂的横向位移趋势。
Characterizing the properties of groundwater aquifers is essential for predicting aquifer response and managing groundwater resources. In this work, we develop a high-dimensional scalable Bayesian inversion framework governed by a three-dimensional quasi-static linear poroelastic model to characterize lateral permeability variations in groundwater aquifers. We determine the maximum a posteriori (MAP) point of the posterior permeability distribution from centimeter-level surface deformation measurements obtained from Interferometric Synthetic Aperture Radar (InSAR). The scalability of our method to high parameter dimension is achieved through the use of adjoint-based derivatives, inexact Newton methods to determine the MAP point, and a Matérn class sparse prior precision operator. Together, these guarantee that the MAP point is found at a cost, measured in number of forward/adjoint poroelasticity solves, that is independent of the parameter dimension. We apply our methodology to a test case for a municipal well in Mesquite, Nevada, in which InSAR and GPS surface deformation data are available. We solve problems with up to 320,824 state variable degrees of freedom (DOFs) and 16,896 parameter DOFs. A consistent treatment of noise level is employed so that the aquifer characterization result does not depend on the pixel spacing of surface deformation data. Our results show that the use of InSAR data significantly improves characterization of lateral aquifer heterogeneity, and the InSAR-based aquifer characterization recovers complex lateral displacement trends observed by independent daily GPS measurements.