论文标题
虚拟知识基础上的可区分推理
Differentiable Reasoning over a Virtual Knowledge Base
论文作者
论文摘要
我们考虑使用语料库作为虚拟知识库(KB)回答复杂的多跳问题的任务。特别是,我们描述了一个神经模块Drkit,该模块像KB一样遍历文本数据,轻柔地遵循语料库中实体提及之间的关系路径。在每个步骤中,模块都使用稀疏 - 矩阵TFIDF索引和最大内部产品搜索(MIPS)的组合,在提及的上下文表示的特殊索引上。该模块是可区分的,因此可以使用基于梯度的方法从自然语言输入开始,可以使用基于梯度的方法对整个系统进行训练。我们还通过使用现有知识库生成硬负示例来描述上下文表示编码的训练方案。我们表明,Drkit在Metaqa数据集中的3-HOP问题上提高了9分,从而将基于文本的和基于KB的最新技术的差距缩短了70%。在HOTPOTQA上,Drkit可导致基于BERT的重新级别方法提高10%,以检索回答问题所需的相关段落。 Drkit也非常有效,比现有的多跳系统的处理每秒多10-100倍。
We consider the task of answering complex multi-hop questions using a corpus as a virtual knowledge base (KB). In particular, we describe a neural module, DrKIT, that traverses textual data like a KB, softly following paths of relations between mentions of entities in the corpus. At each step the module uses a combination of sparse-matrix TFIDF indices and a maximum inner product search (MIPS) on a special index of contextual representations of the mentions. This module is differentiable, so the full system can be trained end-to-end using gradient based methods, starting from natural language inputs. We also describe a pretraining scheme for the contextual representation encoder by generating hard negative examples using existing knowledge bases. We show that DrKIT improves accuracy by 9 points on 3-hop questions in the MetaQA dataset, cutting the gap between text-based and KB-based state-of-the-art by 70%. On HotpotQA, DrKIT leads to a 10% improvement over a BERT-based re-ranking approach to retrieving the relevant passages required to answer a question. DrKIT is also very efficient, processing 10-100x more queries per second than existing multi-hop systems.