论文标题

遗传算法引入的晶界图深学习:解决五个自由度的挑战

Genetic Algorithm-Guided Deep Learning of Grain Boundary Diagrams: Addressing the Challenge of Five Degrees of Freedom

论文作者

Hu, Chongze, Zuo, Yunxing, Chen, Chi, Ong, Shyue Ping, Luo, Jian

论文摘要

晶界(GB)通常控制多晶材料的加工和性能。在这里,通过将GB性质图构造为温度和散装组成的函数,也称为“肤色图”,作为一种通用材料科学工具,与相位图相同。但是,GB具有五个宏观(晶体学)自由度(DOFS)。从本质上讲,通过实验或建模构建五个DOF的函数,构造GB的属性图是一个“任务”。本文中,我们将同质半宏观典型的集合杂种蒙特卡洛和分子动力学(混合MC/MD)模拟与遗传算法(GA)和深神经网络(DNN)模型相结合,以应对这一巨大的挑战。 DNN预测比原子模拟快约108个,从而实现了数百万个五个DOF的截然不同的GB的属性图的构建。值得注意的是,不仅对于对称倾斜和Twist GB,而且还达到了不对称倾斜和混合倾斜的GB的出色预测精度。后者更为复杂,理解较少,但是它们无处不在,并且通常会限制真实多晶体作为弱环节的性能。 GB性质的数据驱动预测是温度,散装组成和五个晶体学DOF(即在7D空间中)的函数的预测,打开了一个新的范式。

Grain boundaries (GBs) often control the processing and properties of polycrystalline materials. Here, a potentially transformative research is represented by constructing GB property diagrams as functions of temperature and bulk composition, also called "complexion diagrams," as a general materials science tool on par with phase diagrams. However, a GB has five macroscopic (crystallographic) degrees of freedom (DOFs). It is essentially a "mission impossible" to construct property diagrams for GBs as a function of five DOFs by either experiments or modeling. Herein, we combine isobaric semi-grand-canonical ensemble hybrid Monte Carlo and molecular dynamics (hybrid MC/MD) simulations with a genetic algorithm (GA) and deep neural network (DNN) models to tackle this grand challenge. The DNN prediction is ~108 faster than atomistic simulations, thereby enabling the construction of the property diagrams for millions of distinctly different GBs of five DOFs. Notably, excellent prediction accuracies have been achieved for not only symmetric-tilt and twist GBs, but also asymmetric-tilt and mixed tilt-twist GBs; the latter are more complex and much less understood, but they are ubiquitous and often limit the performance properties of real polycrystals as the weak links. The data-driven prediction of GB properties as function of temperature, bulk composition, and five crystallographic DOFs (i.e., in a 7D space) opens a new paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源