论文标题

调整普朗克的途径,以研究旋转的pyrochlore heisenberg抗fiferromagnet的热力学

Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet

论文作者

Derzhko, Oleg, Hutak, Taras, Krokhmalskii, Taras, Schnack, Jürgen, Richter, Johannes

论文摘要

在高度沮丧的量子磁性领域中,旋转半旋转的pyrochlore Heisenberg抗fiferromagnet(PHAF)是最具挑战性的问题之一。 M. DTSCH。物理。 Ges。 {\ bf 2},202-204(1900)]我们通过在低温和高温行为之间插值来计算该模型的热力学特性。为此,我们遵循B.〜Bernu和G.〜Misguich详细开发的想法,并用于插值熵利用总和规则[``熵方法''(em)]。我们通过有限温度的Lanczos方法(FTLM)获得的相应结果来补充特定热量,熵和易感性的EM结果,该结果是$ n = 32 $位点以及高温扩展(HTE)数据的有限晶格。我们发现,由于明显的有限尺寸效果,$ n = 32 $的FTLM数据对于低于$ t \ th 0.7 $的无限系统并不代表。针对无限PHAF设计的HTE,与$ t \ gtrsim 0.7 $的类似限制也持有。相比之下,EM为无限PHAF的整个温度区域提供了可靠的数据。我们找到了无间隙频谱的证据,从而导致特定热量以低$ t $为特定热量的幂律行为,而在$ t \ t \ th $ t \ 0.25 $的$ c(t)$中的单个最大值。对于易感性$χ(t)$,我们发现减少$ t $的单调增加$χ$,达到$χ_0\约0.1 $ t = 0 $。此外,EM允许将基态能量估计为$ E_0 \约-0.52 $。

The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M.~Planck [M.~Planck, Verhandl. Dtsch. phys. Ges. {\bf 2}, 202-204 (1900)] we calculate thermodynamic properties of this model by interpolating between the low- and high-temperature behavior. For that we follow ideas developed in detail by B.~Bernu and G.~Misguich and use for the interpolation the entropy exploiting sum rules [the ``entropy method'' (EM)]. We complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of $N=32$ sites as well as by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for $N=32$ are not representative for the infinite system below $T \approx 0.7$. A similar restriction to $T \gtrsim 0.7$ holds for the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the specific heat at low $T$ and for a single maximum in $c(T)$ at $T\approx 0.25$. For the susceptibility $χ(T)$ we find indications of a monotonous increase of $χ$ upon decreasing of $T$ reaching $χ_0 \approx 0.1$ at $T=0$. Moreover, the EM allows to estimate the ground-state energy to $e_0\approx -0.52$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源