论文标题

保守的有限体积框架和基于压力的算法,用于各种速度的不可压缩,理想气体和真实气体流体的流动

Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds

论文作者

Denner, Fabian, Evrard, Fabien, van Wachem, Berend

论文摘要

与完全耦合的基于压力的算法一起,提出了一个适用于不可压缩的,理想的气体和实时气体的保守有限体积框架,用于以各种速度模拟流量的模拟,适用于不可压缩的,理想的气体和实时气体。对保护法的应用保守主义和实施,以及使用势头加权的插值对通量的定义对于不可压缩和可压缩的液体相同,适用于由非结构化网格代表的复杂几​​何形状。不可压缩的流体通过预定义的恒定流体特性来描述,而可压缩流体的性能由Noble-Abel-Senifeend-Gas模型描述,其密度的定义和不可压缩和可压缩流体的特定静态和可压缩流体的定义结合在统一的热力动力闭合模型中。离散的管理法律在一个方程式系统中解决了压力,速度和温度。保守的有限体积离散化,统一的热力学闭合模型和基于压力的算法共同产生了一个简单但通用的数值框架。提出的数值框架使用各种测试箱进行了彻底验证,其马赫数范围为0到239,包括不可压缩的流体的粘性流以及声波的传播以及在理想加斯和实时液体中的冲击波中瞬时演变的超音速流动。这些结果表明,在结构化和非结构化的网格上,以各种速度的不可压缩和可压缩流体的流量的数值框架的数值框架的准确性,鲁棒性和收敛性以及质量和能量的保存。

A conservative finite-volume framework, based on a collocated variable arrangement, for the simulation of flows at all speeds, applicable to incompressible, ideal-gas and real-gas fluids is proposed in conjunction with a fully-coupled pressure-based algorithm. The applied conservative discretisation and implementation of the governing conservation laws as well as the definition of the fluxes using a momentum-weighted interpolation are identical for incompressible and compressible fluids, and are suitable for complex geometries represented by unstructured meshes. Incompressible fluids are described by predefined constant fluid properties, while the properties of compressible fluids are described by the Noble-Abel-stiffened-gas model, with the definitions of density and specific static enthalpy of both incompressible and compressible fluids combined in a unified thermodynamic closure model. The discretised governing conservation laws are solved in a single linear system of equations for pressure, velocity and temperature. Together, the conservative finite-volume discretisation, the unified thermodynamic closure model and the pressure-based algorithm yield a conceptually simple, but versatile, numerical framework. The proposed numerical framework is validated thoroughly using a broad variety of test-cases, with Mach numbers ranging from 0 to 239, including viscous flows of incompressible fluids as well as the propagation of acoustic waves and transiently evolving supersonic flows with shock waves in ideal-gas and real-gas fluids. These results demonstrate the accuracy, robustness and the convergence, as well as the conservation of mass and energy, of the numerical framework for flows of incompressible and compressible fluids at all speeds, on structured and unstructured meshes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源