论文标题
有效的sato-tate猜想
Effective forms of the Sato--Tate conjecture
论文作者
论文摘要
我们证明了对holomorthic Cuspidal Newforms的Sato-Tate猜想的有效形式,这些新形式改善了作者的先前工作(与Lemke Oliver的独奏和关节)。我们还证明了两种扭曲授权新形式的联合Sato-Tate分布的有效形式。由于牛顿和索恩的最新工作,我们的结果是无条件的。
We prove effective forms of the Sato-Tate conjecture for holomorphic cuspidal newforms which improve on the author's previous work (solo and joint with Lemke Oliver). We also prove an effective form of the joint Sato-Tate distribution for two twist-inequivalent newforms. Our results are unconditional because of recent work of Newton and Thorne.