论文标题

使用非负基质分解对空中伽马射线背景进行建模

Modeling Aerial Gamma-Ray Backgrounds using Non-negative Matrix Factorization

论文作者

Bandstra, M. S., Joshi, T. H. Y., Bilton, K. J., Zoglauer, A., Quiter, B. J.

论文摘要

空降伽马射线调查对许多应用都有用,从地质和采矿到公共卫生和核安全。在所有这些情况下,将测量光谱分解为背景源项的线性组合的能力可以为数据提供有用的见解,并导致对使用光谱能量窗口的技术的改进。存在多种光谱线性分解的方法,但要受到各种缺点,例如允许负光子通量或需要详细的蒙特卡洛建模。我们建议使用非负矩阵分解(NMF)作为光谱分解的数据驱动方法。使用包括在水上飞行的航空调查,我们证明了NMF的数学方法在空中伽马射线背景中发现了物理相关的结构,即测得的光谱可以表示为附近的陆地发射,较远的地面发射,以及radon和radon and Cosics和宇宙发射。将这些NMF背景组件与使用噪声调整的奇异值分解(NASVD)获得的背景组件进行比较,后者包含负光子通量,因此并不代表以直接的方式代表发射光谱。最后,我们评论NMF分解启用的潜在研究领域,例如光谱异常检测和数据融合的新方法。

Airborne gamma-ray surveys are useful for many applications, ranging from geology and mining to public health and nuclear security. In all these contexts, the ability to decompose a measured spectrum into a linear combination of background source terms can provide useful insights into the data and lead to improvements over techniques that use spectral energy windows. Multiple methods for the linear decomposition of spectra exist but are subject to various drawbacks, such as allowing negative photon fluxes or requiring detailed Monte Carlo modeling. We propose using Non-negative Matrix Factorization (NMF) as a data-driven approach to spectral decomposition. Using aerial surveys that include flights over water, we demonstrate that the mathematical approach of NMF finds physically relevant structure in aerial gamma-ray background, namely that measured spectra can be expressed as the sum of nearby terrestrial emission, distant terrestrial emission, and radon and cosmic emission. These NMF background components are compared to the background components obtained using Noise-Adjusted Singular Value Decomposition (NASVD), which contain negative photon fluxes and thus do not represent emission spectra in as straightforward a way. Finally, we comment on potential areas of research that are enabled by NMF decompositions, such as new approaches to spectral anomaly detection and data fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源