论文标题

图像脱毛的平均方法上的最大熵

The Maximum Entropy on the Mean Method for Image Deblurring

论文作者

Rioux, Gabriel, Choksi, Rustum, Hoheisel, Tim, Marechal, Pierre, Scarvelis, Christopher

论文摘要

图像DeBlurring是一个臭名昭著的逆向问题。近年来,已经根据图像级别的正规化或机器学习的技术提出了多种方法。我们提出了一种替代方法,将范式转移到图像空间上概率分布的水平上的正则化。我们的方法基于最大熵的概念,即我们在图像的概率密度函数级别上工作的均值,该图像的概率密度函数的期望是我们对地面真理的估计。使用凸分析和概率理论中的技术,我们表明该方法在计算上是可行的,并且可以对非常大的模糊。此外,当图像嵌入符号学(一种已知模式)时,我们将展示如何应用我们的方法以近似未知的模糊内核具有显着效果。尽管我们的方法在少量噪声方面是稳定的,但它并不能积极地降解。但是,对于中度至大量的噪声,它通过使用最先进的方法进行了预处理的DeNo,其性能很好。

Image deblurring is a notoriously challenging ill-posed inverse problem. In recent years, a wide variety of approaches have been proposed based upon regularization at the level of the image or on techniques from machine learning. We propose an alternative approach, shifting the paradigm towards regularization at the level of the probability distribution on the space of images. Our method is based upon the idea of maximum entropy on the mean wherein we work at the level of the probability density function of the image whose expectation is our estimate of the ground truth. Using techniques from convex analysis and probability theory, we show that the method is computationally feasible and amenable to very large blurs. Moreover, when images are imbedded with symbology (a known pattern), we show how our method can be applied to approximate the unknown blur kernel with remarkable effects. While our method is stable with respect to small amounts of noise, it does not actively denoise. However, for moderate to large amounts of noise, it performs well by preconditioned denoising with a state of the art method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源