论文标题
连贯散射测量的最大信息状态
Maximum information states for coherent scattering measurements
论文作者
论文摘要
使用相干光进行精确测量一直是许多研究方向的关键驱动力,从生物医学光学器件到半导体制造。最近的工作表明,通过定制用于估算可观察到系统参数的光场的空间谱,可以显着提高此类测量的精度。这些进步自然提出了一个有趣的问题,即哪种光线可以提供最终的测量精度。在这里,我们介绍了一种通用方法,以确定估计任何给定参数的最佳光线状态,无论系统的复杂性如何。我们的分析表明,传递最终测量精度的光场是Hermitian操作员的本征态,它根据系统的散射矩阵量化了Fisher信息。为了说明这一概念,我们在实验上表明,这些最大信息状态可以探测被无序培养基隐藏的对象的相位或位置,而与未持续的状态相比,精确度改善了精度。我们的结果可以在任意复杂的系统中实现最佳精确测量,从而为计量和成像应用建立了新的基准。
The use of coherent light for precision measurements has been a key driving force for numerous research directions, ranging from biomedical optics to semiconductor manufacturing. Recent work demonstrates that the precision of such measurements can be significantly improved by tailoring the spatial profile of light fields used for estimating an observable system parameter. These advances naturally raise the intriguing question of which states of light can provide the ultimate measurement precision. Here, we introduce a general approach to determine the optimal coherent states of light for estimating any given parameter, regardless of the complexity of the system. Our analysis reveals that the light fields delivering the ultimate measurement precision are eigenstates of a Hermitian operator which quantifies the Fisher information based on the system's scattering matrix. To illustrate this concept, we experimentally show that these maximum information states can probe the phase or the position of an object that is hidden by a disordered medium with a precision improved by an order of magnitude as compared to unoptimized states. Our results enable optimally precise measurements in arbitrarily complex systems, thus establishing a new benchmark for metrology and imaging applications.