论文标题

歧视性的对抗性搜索抽象摘要

Discriminative Adversarial Search for Abstractive Summarization

论文作者

Scialom, Thomas, Dray, Paul-Alexis, Lamprier, Sylvain, Piwowarski, Benjamin, Staiano, Jacopo

论文摘要

我们介绍了一种新颖的方法,用于序列解码,判别性对抗搜索(DAS),该方法具有减轻暴露偏见的影响而无需外部指标的理想特性。受生成对抗网络(GAN)的启发,其中使用歧视器来改善生成器,我们的方法与gans不同,因为在训练时间未更新生成器参数,并且鉴别器仅用于在推理时间驱动序列生成。 我们研究了提出的方法对抽象性摘要任务的有效性:获得的结果表明,DA的天真应用改善了对最新方法的改善,并通过鉴别剂重新培训获得了进一步的收益。此外,我们展示了DAS如何有效地适应跨域的适应性。最后,报告的所有结果都是在没有其他基于规则的过滤策略的情况下获得的,该策略通常由可用的最佳性能系统使用:这表明可以有效地部署DAS而不依赖于生成的输出的事后修改。

We introduce a novel approach for sequence decoding, Discriminative Adversarial Search (DAS), which has the desirable properties of alleviating the effects of exposure bias without requiring external metrics. Inspired by Generative Adversarial Networks (GANs), wherein a discriminator is used to improve the generator, our method differs from GANs in that the generator parameters are not updated at training time and the discriminator is only used to drive sequence generation at inference time. We investigate the effectiveness of the proposed approach on the task of Abstractive Summarization: the results obtained show that a naive application of DAS improves over the state-of-the-art methods, with further gains obtained via discriminator retraining. Moreover, we show how DAS can be effective for cross-domain adaptation. Finally, all results reported are obtained without additional rule-based filtering strategies, commonly used by the best performing systems available: this indicates that DAS can effectively be deployed without relying on post-hoc modifications of the generated outputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源