论文标题

无线驱动MEC的计算速率最大化,并具有传播频谱多访问

Computation Rate Maximization in Wireless Powered MEC with Spread Spectrum Multiple Access

论文作者

Chen, Yuegui, Bi, Suzhi, Li, Xian, Lin, Xiaohui, Wang, Hui

论文摘要

移动边缘计算(MEC)和无线电源传输(WPT)技术的集成最近已成为延长电池寿命并增加无线设备计算功率的有效解决方案。在本文中,我们研究了多用户无线驱动MEC系统的资源分配问题,在该系统中,用户通过直接序列代码分区多访问(DS-CDMA)共享无线通道。特别是,我们有兴趣共同优化任务卸载决策和资源分配,以最大化网络中所有用户的加权总和计算率。优化问题被提出为混合整数非线性编程(MINLP)。对于给定的卸载用户集,我们实现了有效的分数编程(FP)方法来减轻上行链路任务中的多用户干扰。最重要的是,我们然后提出了一种随机的本地搜索算法,以优化卸载决策。仿真结果表明,与其他代表性基准方法相比,该方法可以有效地增强具有传播频谱多重访问的无线功率MEC的计算性能。

The integration of mobile edge computing (MEC) and wireless power transfer (WPT) technologies has recently emerged as an effective solution for extending battery life and increasing the computing power of wireless devices. In this paper, we study the resource allocation problem of a multi-user wireless powered MEC system, where the users share the wireless channel via direct sequence code division multiple access (DS-CDMA). In particular, we are interested in jointly optimizing the task offloading decisions and resource allocation, to maximize the weighted sum computation rate of all the users in the network. The optimization problem is formulated as a mixed integer non-linear programming (MINLP). For a given offloading user set, we implement an efficient Fractional Programming (FP) approach to mitigate the multi-user interference in the uplink task offloading. On top of that, we then propose a Stochastic Local Search algorithm to optimize the offloading decisions. Simulation results show that the proposed method can effectively enhance the computing performance of a wireless powered MEC with spread spectrum multiple access compared to other representative benchmark methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源